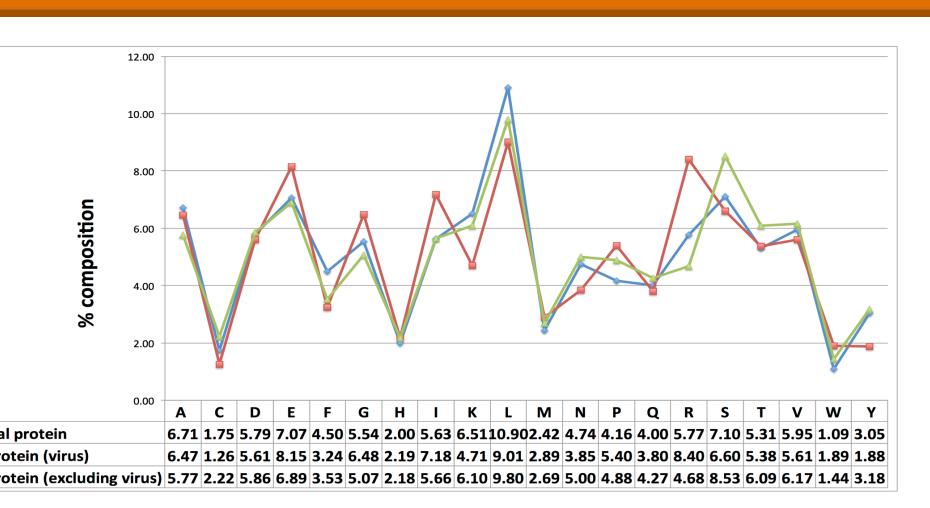
Analyses and Prediction of Antiviral proteins using Support Vector Machine

Akanksha Rajput and Manoj Kumar*

Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh-160036, INDIA Email: akanksha@imtech.res.in ; manojk@imtech.res.in

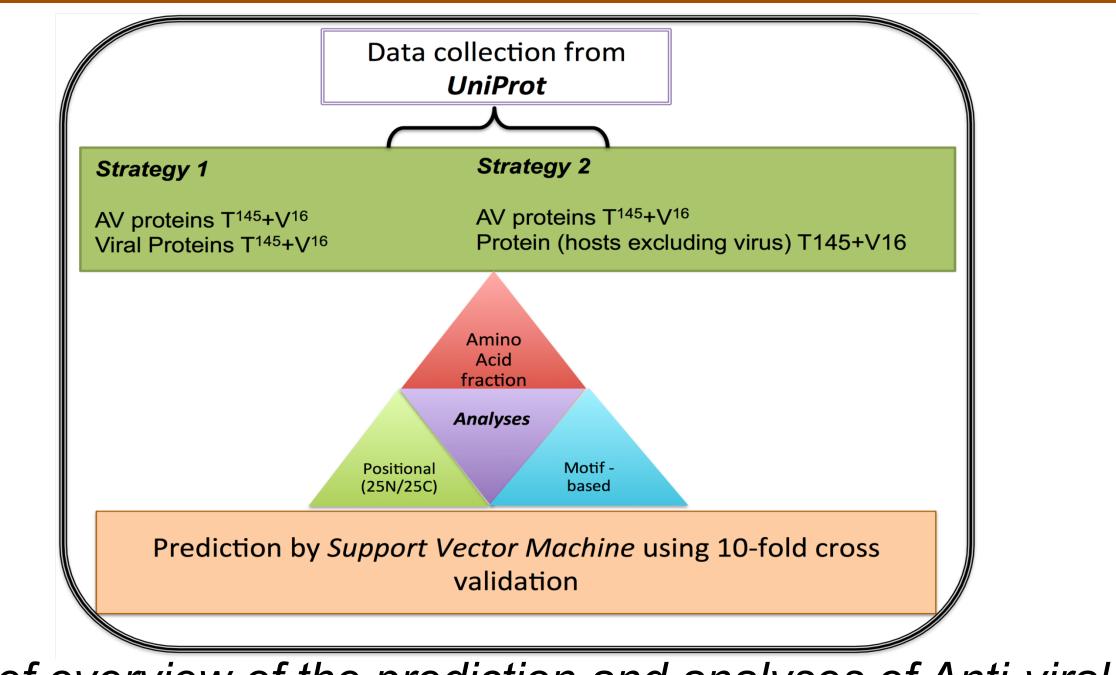

Introduction

 \succ Antiviral (AV) proteins have therapeutic potential to interfere viral replication in hosts.

- These proteins are induced in host as an immune response against viral infection via interferon that further mediates them to inhibit virus replication.
- > Despite having therapeutic potentials, these proteins are computationally unexplored.

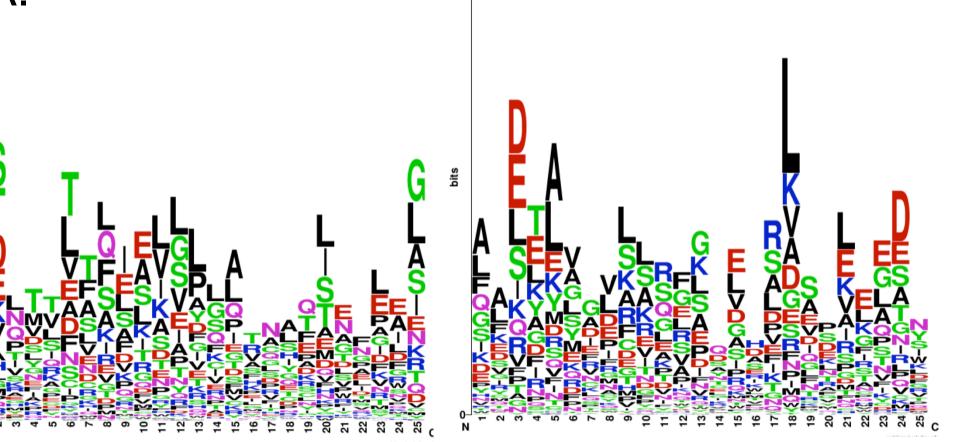
Results

II. Comparison of Amino Acid Composition of AVPs, Viral proteins and host proteins other than viruses


B

III. Positional

Objectives


- Prediction of Anti-viral (AV) proteins using Support Vector Machine (SVM).
- Analyses of AV proteins

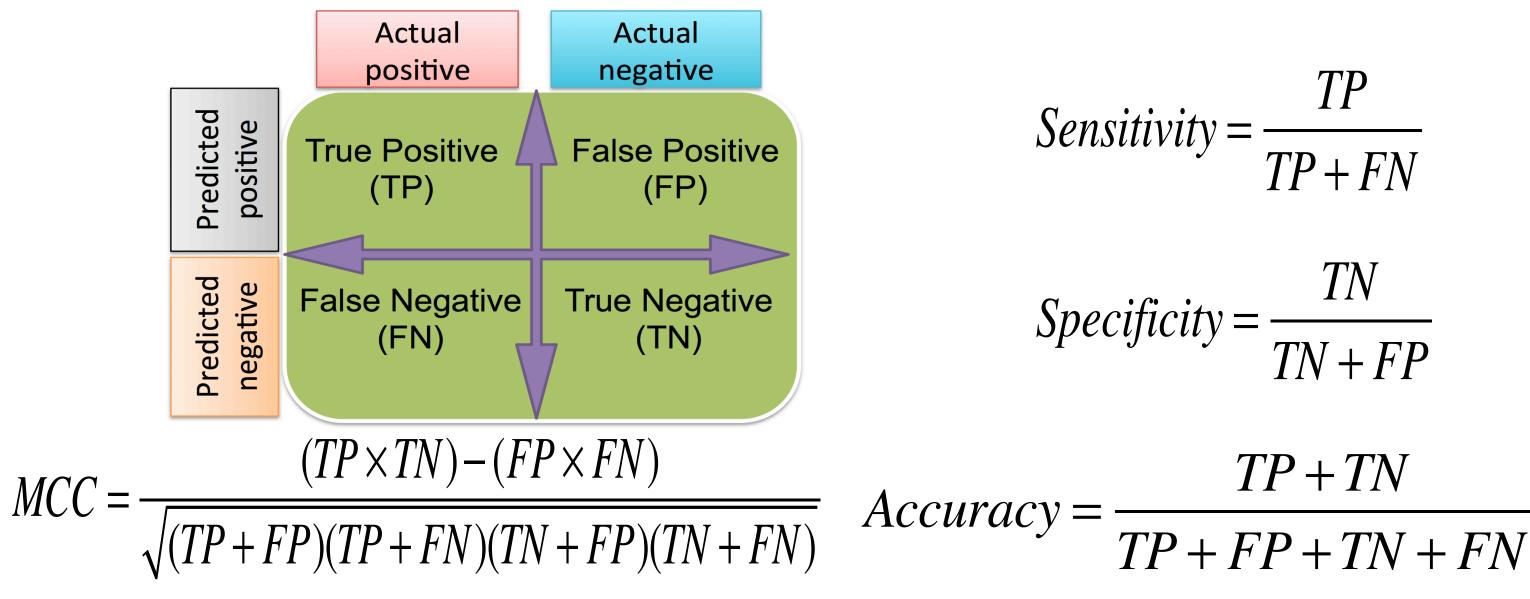
Methodology

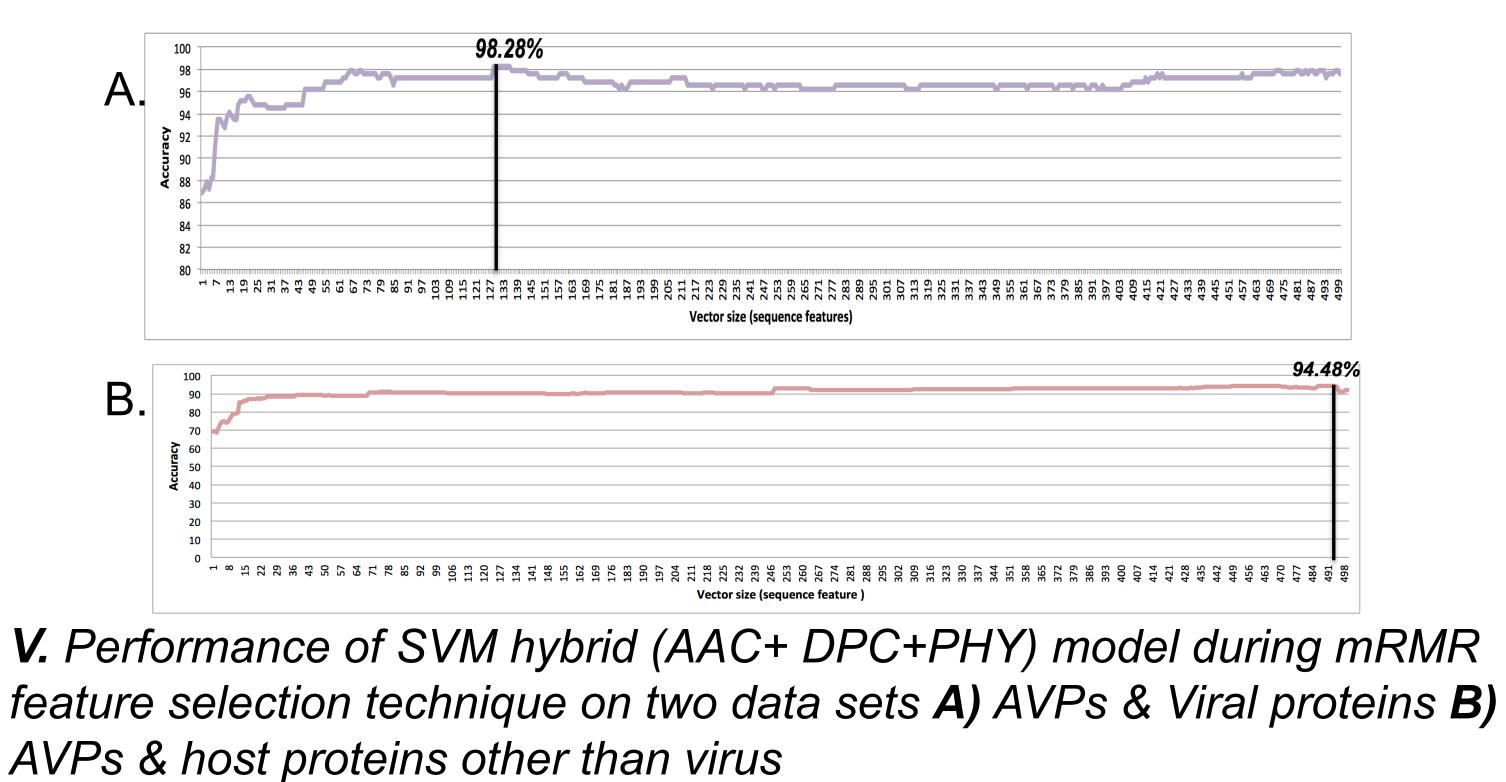
Brief overview of the prediction and analyses of Anti-viral protein

preference of Amino Acid **A)** 25N and **B**) 25C terminus Of **AVPs**

S.No	Motif logo	Motif Width	Sequence coverage
Motif 1	[⋬] ଈଢ଼ଢ଼⋈ ┰ ┼⋧⋧⋳⋤ <mark>⋧</mark> Ģ⋟Ţ⋩⋠⋪⋇	20	32
Motif 2	[⋬] ॑ ₅⋩ ⋷ ⋪ТахсЕ⋸⋳∊₽↓⋼⋼⋧⋦⋳∊⋎	20	29
Motif 3	⋬ ⋤↓Q₿ <mark>₿Ġ₿₳₿₽₽₽</mark> \$ ∓ ⋛⋨₩⋸⋤	20	26
Motif 4	_⋬ ₽ <mark>₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</mark>	20	28
Motif 5	^{#]} ¥ ⁶ 8 \ôbficter	20	21
Motif 6	ℬŊŸਙŖţĔĔĿĢĎşŢĹĶ _Ĕ	15	20
Motif 7	^ⅆ K℁ℷ⅌ⅅ⅄ ℷ ЀႸℙ⊺ℰႸ฿ ҄҂҂≜ _฿ ฿	20	25
Motif 8	<mark>⋬<mark>⋷</mark>₭⋷∊₽₯_¥⋩<mark>с</mark>⋩<mark>ҫ</mark>ур</mark>	20	21
Motif 9	ⅆ ₩ ĔĹ <mark>⋨</mark> б┰VġĹ⋦ _₽ ႳႳ _ኞ ҫұұҙҿѷ	20	21
Motif 10	[⋬] ₅ℊ⋎ _⋷ ₣ _{≋≋₣} ₽ĻĻ _≈ ₽₳ _₣ ┇Н₽₽₽	20	21

IV. Motif extraction of AVPs using MEME/MAST suite


Feature selection algorithm


> Minimum redundancy maximum relevance (mRMR) feature selection method is employed to find most contributing features.

Classifier used

> Support Vector Machine are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis.

Performance measures

Conclusion

> Our study would help the researchers in exploring antiviral potential of protein(s) that further helps in determining their therapeutic potential against various viruses.

Results

MCC AUC

0.69

0.94 1.00

0.94 0.99

0.75 0.93

0.94 1.00

0.81 0.92

0.94 0.99

0.75 0.91

0.94 1.00

0.69 0.89

0.90

I. Performance of	Training/testing data set (T ^{145p+145n})						Validation data set (V ^{16p+16n})			
SVM models during		Sen	Spec	Acc	MCC	AUC	Sen	Spec	Acc	MCC
	AAC									
10-fold cross	Strategy 1	99.31	97.93	98.62	0.97	1.00	100.00	93.75	96.88	0.94
	Strategy 2	97.93	88.28	93.10	0.87	0.98	87.50	81.25	84.38	0.69
validation on training/										
Ŭ	DPC									
testing and validation	Strategy 1	97.93	96.55	97.24	0.94	0.99	100.00	93.75	96.88	0.94
data set	Strategy 2	97.24	90.34	93.79	0.88	0.98	87.50	87.50	87.50	0.75
uala sel										
	РНҮ									
	Strategy 1	97.93	97.93	97.93	0.96	0.99	100.00	93.75	96.88	0.94
	Strategy 2	95.17	92.41	93.79	0.88	0.97	87.50	93.75	90.62	0.81
	AAC+DPC									
	Strategy 1	97.93	97.93	97.93	0.96	0.98	100.00	93.75	96.88	0.94
	Strategy 2	95.17	90.34	92.76	0.86	0.98	87.50	87.50	87.50	0.75
Sen, Sensitivity; Spec, Specificity; Acc,	AAC+DPC+PHY									
Accuracy; AUC, Area Under the Curve;	Strategy 1	97.93	97.24	97.59	0.95	0.98	100.00	93.75	96.88	0.94
AAC, Amino Acid Composition, DPC,	Strategy 2	99.31	83.45	91.38	0.84	0.98	87.50	81.25	84.38	0.69
Dipeptide Composition; PHY, Top 10 - physicochemical properties;	 *Strategy 1, 145 AV protein and 145 viral proteins; *Strategy 2, 145 AV protein and 145 other host proteins (excluding viral) 									

Acknowledgements

- Council of Scientific and Industrial Research (CSIR), India
- > Department of Biotechnology (DBT), Govt. of India

- Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001 Oct;14(4):778-809.
- Cortes, C. & Vapnik, V. Support-vector networks. *Mach Learn*. 1995 Feb; 20(273).
- Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. *IEEE Trans Pattern Anal Mach Intell*. 2005 Aug;27(8): 1226-38.
- Rajput A, Gupta AK, Kumar M. Prediction and analysis of quorum sensing peptides based on sequence features. PLoS One. 2015 Mar17;10(3):e0120066.
- > Thakur N, Qureshi A, Kumar M. AVPpred: collection and prediction of highly effective antiviral peptides. *Nucleic Acids Res.* 2012 Jul;40 (Web Server issue):W199-204.